OF CHANGE PAGE ONLY

CONTENTS

1.0	BACKGROUND AND SUMMARY	3
2.0	SCOPE	5
3.0	SOIL ANALYSIS RESULTS AND DISCUSSION	6
	3.1 SOIL SAMPLE COLLECTION	6
	3.2 SOIL ANALYSIS DATA	6
	3.3 COMPARISON WITH BACKGROUND RADIONUCLIDE ACTIVITY LEVELS AT THE SSFL	7
4.0	CONCLUSIONS	11
	4.1 SPECIFIC CONCLUSIONS	11
	4.2 OVERALL CONCLUSIONS	11
5.0	REFERENCES	12
AP:	PPENDIX A – DERIVED ALPHA, BETA, AND RADIONUCLIDE DATA FROM BUILDING T009 DRAIN LINE SOIL	13
AP.	PPENDIX B – LIST OF ITEMS IN THE BUILDING T009 DECOMMISSIONING FILE	20
	TABLES	
1.	Summary of Gamma Spectrometry Data for All 199 T009 Drain Line Soil Samples	7
2.	Summary of Background Soil Radionuclide Activity at the SSFL	8
	FIGURES	
1.	Plot Plan of Building T009 During Critical Assembly Operations	4
2.	Measured ²³⁸ U/ ⁴⁰ K Ratio in T009 Drain Line Soil	9
3.	Measured ²³² Th/ ⁴⁰ K Ratio in T009 Drain Line Soil	9
4.	Measured ²³⁵ U/ ⁴⁰ K Ratio in T009 Drain Line Soil	10

			金融の機能を受ける。
			the application of stations

1.0 BACKGROUND AND SUMMARY

Building T009 is located in Area IV of Rockwell International's Santa Susana Field Laboratories (SSFL), and was originally designated the Critical Experiments Building. From the late 1950s until the early 1970s, this building supported nuclear reactor programs for the U.S. Department of Energy's (DOE) predecessor agencies. Primarily, these included two critical experiments: the sodium graphite reactor (SGR) and the organic moderated reactor (OMR).

As shown in Figure 1, the SGR was located in the eastern part of the building and the OMR was located in the western part. In the late 1960s, the SGR and OMR programs were terminated and all materials from the two critical assemblies were subsequently removed and transferred to other laboratories or disposed of at authorized sites in the early 1970s. At that time, the building was re-designated the Engineering Development Facility. The SGR side is currently being used for in-service inspection (ISI) activities for nuclear power plants involving equipment contaminated with low levels of radioactivity.

Although no major contamination incidents are known to have occurred in Building T009, it was general practice at Atomics International to clean up any small contamination incidents that may have occurred to original "clean" conditions. Nevertheless, in 1988 a comprehensive radiological survey (Ref. 1) was conducted on the OMR side as part of a broad radiological survey plan for the SSFL (Ref. 2), with the intent of preparing the OMR side of the building for release without radiological restrictions. The SGR side was not included because of the ongoing ISI work.

The 1988 survey included total and removable alpha/beta radioactivity measurements on the building interior, examination of sludge from sink clean-outs, shower drains, etc., including sludge from the inactive SGR hold-up tank and pit, and ambient gamma exposure measurements outside the building on the northwest side. The results of the survey showed that a few locations inside the facility were very slightly contaminated, but at levels far below any regulatory limits. No radioactivity was observed in the drain-line sludge samples; however, analysis of sludge inside the SGR hold-up tank indicated slight contamination with fission products, ²³⁸U, ²³²Th, and possibly ²³⁵U. The report concluded that further investigation of the area was not required, but recommended Health Physics supervision, and collection and examination of radiological data in the vicinity of the drain lines, if the hold-up tank were removed for disposal.

Subsequent to the 1988 survey report, the SGR hold-up tank and associated drain system were removed in late 1989 and early 1990 (Ref. 3) for disposal at an authorized site. As part of this effort, numerous soil samples were collected from areas immediately adjacent to the removed drain lines for subsequent gamma spectrometric analysis. The results of the analyses of these soil samples for residual radioactivity are discussed in this Safety Review Report and showed no measurable radionuclide activity above normal background levels at the SSFL.

		-0 elegation de la companya de la co
		1. (20) MBH (1000

5709-1

Figure 1. Plot Plan of Building T009 During Critical Assembly Operations

。 - 公司 - 公 - 公 - 公 - 公 - 公 - 公 - 公 - 公
The manufacture of the manufactu
63-100 A 100 A

2.0 SCOPE

The scope of the present effort was to (1) present the results of analyses of the soil samples collected during the removal of the SGR hold-up tank and associated drain lines, (2) statistically analyze the data and compare these with available background data for the SSFL to determine if the surveyed areas are free of radioactive contamination, and thus may be released without radiological restrictions, and (3) have all material relevant to the Building T009 decontamination assembled and archived in a permanent file at the SSFL.

では、一般では、一般では、一般では、一般では、一般では、一般では、一般では、一般

3.0 SOIL ANALYSIS RESULTS AND DISCUSSION

3.1 SOIL SAMPLE COLLECTION

Removal of the inactive SGR hold-up tank and drain lines was performed in late 1989 and early 1990 (Ref. 3). All work was performed in accordance with a detailed work procedure (Ref. 4). As part of this effort, 199 two-pound soil samples were randomly taken from soil areas immediately adjacent to the removed drain lines, both outside the facility, and from sections underneath Building T009. A complete description of the areas surveyed is given in Ref. 3.

During soil removal, an indication-only survey for residual contamination was conducted on the drain line trenches using a Ludlum Model 12S Micro-R meter, and a Ludlum Model 12 countrate meter with a thin-window pancake probe. No indication of radioactive contamination was observed during this survey, and the drain line trenches were subsequently backfilled and resurfaced.

3.2 SOIL ANALYSIS DATA

Gamma spectrometry was performed on the 199 two-pound soil samples using a Canberra Series 80 gamma spectrometer. A generic description of the spectrometer and its calibration is given in Ref. 5. The resulting spectrometry data were analyzed using the in-house spreadsheet code MCASOIL. MCASOIL converts the multichannel analyzer (MCA) output from the gamma spectrometer (i.e., quantity of isotope for each peak analyzed) in μ Ci, to concentrations of selected isotopes, and total derived alpha and beta activities (both in pCi/g). These calculational procedures are also described in Ref. 5.

Spectrometric data from the 199 soil samples were examined for concentration of the naturally occurring isotopes ²³⁸U, ²³²Th, ²³⁵U, and ⁴⁰K, and the man-made isotopes ¹³⁷Cs, ¹³⁴Cs, and ⁶⁰Co. Mean and standard deviations for the activity concentrations of these isotopes are summarized in Table 1; the complete MCASOIL output listing is given in Appendix A. As indicated in Appendix A, except for two isolated data points for ¹³⁷Cs (Sample Nos. 124 and G6), no measurable activity was observed for the man-made nuclides ¹³⁷Cs, ¹³⁴Cs, or ⁶⁰Co in any soil sample. The two isolated data points for ¹³⁷Cs are very low (0.15 and 0.18 pCi/g), and are close to the detection limit of the MCA system for ¹³⁷Cs of ~0.1 to 0.2 pCi/g. These values of 0.15 and 0.18 pCi/g are also more than an order of magnitude lower than the 2.6 pCi/g of ¹³⁷Cs found in the SGR hold-up tank sludge sample during the 1988 survey (Ref. 1).

・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
260
*** *** *** **** **** **** ***** ***** ****

for All 199 T009 Drain Line Soil Samples			
Radionuclide	Mean Value ^a	Standard Deviation ^b	

T-11-1

Radionuclide	Mean Value ^a (pCi/g)	Standard Deviation ^b (pCi/g)
Naturally occurring		
²³⁸ U	0.64	0.24
235 _U	0.02	0.03
²³² Th	0.97	0.36
⁴⁰ K	15.3	5.6
<u>Man-made</u>		
¹³⁷ Cs	0.0c	0.0
134Cs 60Co	0.0	0.0
⁶⁰ Co	0.0	0.0

^aMean value of 199 soil data values (Appendix A).

D635-0164

3.3 COMPARISON WITH BACKGROUND RADIONUCLIDE ACTIVITY LEVELS AT THE SSFL

Because radionuclide activity, including the fission product ¹³⁷Cs, was observed in the inactive SGR hold-up tank sludge sample, it is instructive to examine the radionuclide data in Table 1 to determine if the measured activities are consistent with naturally occurring radioactivity levels at the SSFL. This will verify that no unobserved leaks occurred in the drain line system during its operation that may have contaminated the surrounding soil.

Background radionuclide activity is present at the SSFL, and elsewhere, as a result of several naturally occurring radionuclides and also from the man-made nuclide ¹³⁷Cs from radioactive fallout during the period of atmospheric nuclear weapons testing. Background values for radionuclide activity at the SSFL were independently measured as part of an Area IV survey by Groundwater Resources Consultants (GRC), Inc. between July and October 1988 (Ref. 6). Measured background values for ²³⁸U, ²³⁵U, ²³²Th, ¹³⁷Cs, and ⁴⁰K from the survey are summarized in Table 2. The activity values in Table 2 are an average of data from three representative soil samples taken during the GRC survey.

^bStandard deviation (10) of distribution.

^cMean value includes two data points with values of 0.15 and 0.18 pCi/g, which were above the cutoff limit for the measuring equipment (see text).

Thus, the data show no increased residual activity either from the ¹³⁷Cs fission product, from the ²³⁸U and ²³⁵U fuel element isotopes, or from ²³²Th, which could have potentially contaminated the soil in the vicinity of the drain lines.

Although the comparison of the data in Tables 1 and 2 indicates that there is no residual radionuclide activity from ¹³⁷Cs, ²³⁸U, or ²³⁵U in the Building T009 drain line soil, the data do indicate some small systematic differences in the T009 data and the corresponding background data determined by GRC. Figures 2, 3, and 4 show the ratio of ²³⁸U, ²³²Th, and ²³⁵U with respect to the naturally occurring ⁴⁰K data, for each of the 199 soil samples plotted against the cumulative gaussian probability. The value of this type of graphical display is that it permits the identification of individual data points significantly outside the range expected for the distribution. For a perfectly "normal" (gaussian) distribution, the data values would fall on a straight line, with the mean value

Table 2. Summary of Background Soil Radionuclide Activity at the SSFL

Isotope	Mean Value ^a (pCi/g)	Standard Deviation ^b (pCig)
Naturally occurring		
²³⁸ U	1.1	0.3
235 _U	0.04	0.02
²³² Th	1.7	0.3
⁴⁰ K	22	1
<u>Man-made</u>		
¹³⁷ Cs	0.07	0.05

Note: Data from Groundwater Resources Consultants (GRC) Report 8640M-77 (Ref. 6)

D635-0164

^aAverage of data from three representative soil samples.

^bStandard deviation (10) of distribution.

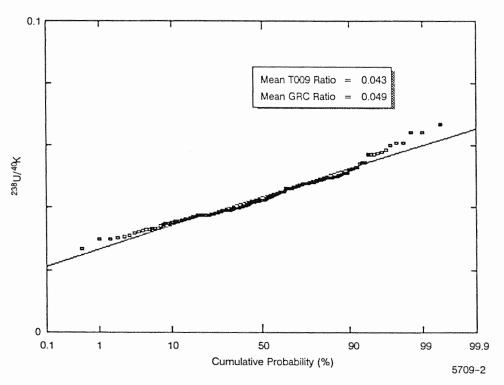


Figure 2. Measured ²³⁸U/⁴⁰K Ratio in T009 Drain Line Soil

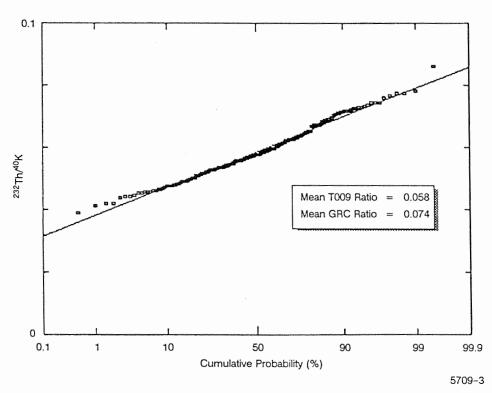


Figure 3. Measured ²³²Th/⁴⁰K Ratio in T009 Drain Line Soil

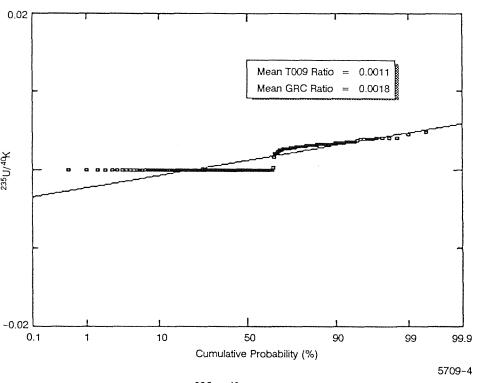


Figure 4. Measured ²³⁵U/⁴⁰K Ratio in T009 Drain Line Soil

occurring at the 50% point on the probability axis. For comparison, the mean ratio values for the T009 data and the GRC data are also indicated inside each figure.

Figures 2 and 3 show distributions which are closely gaussian, with no outliers. The distribution in Figure 4, for ²³⁵U, also shows no outliers but it is slightly skewed due to a large number of "zero" measurements. The mean isotope ratios obtained from the Building T009 data, although being similar to the corresponding GRC values, are nonetheless consistently lower. These comparisons, therefore, suggest that there are some small energy-dependent sensitivity and/or calibration differences between the Canberra instrument used at the SSFL and the analysis system used by GRC Inc. These differences, however, have no effect on the overall conclusions reached from the data.

· · · · · · · · · · · · · · · · · · ·
43 44 (1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.

4.0 CONCLUSIONS

In accordance with the recommendations of the Building T009 radiological survey, the inactive SGR hold-up tank and associated drain line system were removed under Health Physics supervision for disposal at an authorized site. As part of this work, extensive soil samples were taken for subsequent gamma spectrometric analysis and the results were compared with background radionuclide activity levels at the SSFL. These analyses are reported here, and the following conclusions are drawn.

4.1 SPECIFIC CONCLUSIONS

- 1. No residual levels of man-made radionuclides were observed in the T009 drain line soil.
- 2. Measured naturally occurring radionuclide activity in the Building T009 drain line soil was comparable to (although slightly lower than) normal background levels measured independently in nearby soils at the SSFL.
- 3. The slightly lower T009 soil activity results compared to normal background levels are attributed to small variations in the sensitivity and/or calibration of the SSFL analysis system.

4.2 OVERALL CONCLUSIONS

- 1. Based on the results of the analyses reported here, the Building T009 drain line soil is free of any residual radioactive contamination.
- 2. Based on the results of the 1988 radiological survey of Building T009, the OMR side (interior western side) and the outside northwestern areas surveyed are acceptably free of residual radioactive contamination.
- 3. The interior western side and the exterior northwestern side are suitable for release for use without radiological restrictions.

で、日本のでは、一般ので
DES MELLOCO RE-164000

5.0 REFERENCES

- 1. Chapman, J. A., "Radiological Survey of Building T009," GEN–ZR–0014, Rocket-dyne Division, Energy Technology Engineering Center, Rockwell International, August 26, 1988.
- 2. Badger, F. H., and Tuttle, R. J., "Radiological Survey Plan for SSFL," 154SRR000001, Rocketdyne Division, Rockwell International, September 25, 1985.
- 3. Klein, A., "Building T009 Drain System Removal," N001TI000329, Rocketdyne Division, Rockwell International, August 22, 1990.
- 4. Parker, D. C., "SGR Liquid Drain Line System Removal, Building T009," 195DWP000001, Rocketdyne Division, Rockwell International, October 10, 1989.
- 5. Chapman, J. A., "Radiological Survey of the Source and Special Nuclear Material Storage Vault Bldg T64," GEN–ZR–0005, Energy Technology Engineering Center, Rockwell International, August 19, 1988.
- 6. "Investigation of Naturally Occurring Radionuclides in Rock, Soils and Groundwater Santa Susana Field Laboratory, Ventura County, California," 8640M–77, Groundwater Resources Consultants, Inc., June 1, 1990.
- 7. Lederer, C. M. and Shirley, V. S. (Eds.), "Table of Isotopes," 7th ed., John Wiley, New York, 1978.

	(2) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
	100 mm (100 mm) (100

APPENDIX A

DERIVED ALPHA, BETA, AND RADIONUCLIDE DATA FROM BUILDING T009 DRAIN LINE SOIL

During removal of the SGR hold-up tank and associated drain line system from Building T009, 199 two-pound samples were collected from the soil surrounding the drain lines. In each case, samples ranging in mass from ~700 to 900 g were analyzed using a Canberra system as described in Ref. 2. Following analysis, the results were input to the MCASOIL spreadsheet, which calculated derived quantities for total alpha and total beta, and derived activities for selected man-made and naturally occurring radionuclides. A zero value in the data tables indicates that no photopeaks were detected above the detection limit of the Canberra multichannel analyzer. For ¹³⁷Cs, this detection limit was ~0.1 to 0.2 pCi/g for the counting times used for the analyses.

		THE PERSON REPORTED BY
		o

N/045KK9900

Table A-1. Gamma Spectrometry Data from Drain Line Soil Samples
(Sheet 1 of 6)

	39	40	41	42	43	44	45	46	47	48	49	50
1	BUILDING T009 DRAIN LINE	SOIL SAMP	LES									
2	(Samples Analyzed: 1/11/90	TO 1/18/90)										
3	Excel File:	009SOIL,XI	_S									
4												
5					plcocurie	s per gram c	of each radio	nuclide				
6					186 keV	185.6 keV						
7			U-238	Th-232	U-235	U-235	K-40	Cs-137	Cs-134	Co-60	Derived Alpha	Derived Beta
8					(from	(from					pCi/g	pCi/g
9					Ra-226)	U-238)						
10	•											
12	Sample	Mass	c32*1e6/	c33*1e6/	c34*1e6/	c41*.045	c35*1e6/	c36*1e6/	c37*1e6/	c38*1e6/		6*c41+4*c42+4*
13	Description	(grams)	c2	c2	c2		c2	c2	c2	c2	+/*043	c43+sum(c44:48)
-	SOIL 1	708.2	0.74	1.11	0.04	0.03	16.50	0.00	0.00	0,00	12.88	25.58
15	SOIL 2	584.9	0.63	1.15	0.00	0.03	16.76	0.00	0.00	0.00	11.89	25.14
16	SOIL 3	494.8	0.73	1.13	0.00	0.03	19.48	0.00	0.00	0.00	12.59	28.39
17	SOIL 4	630.4	0.65	1.09	0.00	0.03	17.39	0.00	0.00	0.00	11.75	25.69
18	SOIL 4 DUPLICATE	698.0	0.67	0.79	0.04	0.03	13.85	0.00	0.00	0.00	10.41	21.24
19	SOIL 5	659.2	0.67	1.05	0.00	0.03	18.31	0.00	0.00	0.00	11.62	26.53
	SOIL 6	649.4	0.84	1.06	0.05	0.04	17.01	0,00	0.00	0.00	13,48	26.56
	SOIL 7	628.7	0.87	1.09	0.06	0.04	17.57	0.00	0.00	0.00	13.93	27.44
	SOIL 8	659.1	0.62	1.19	0.00	0.03	16,34	0.00	0.00	0.00	12.11	24.85
23	SOIL 9	639.4	0.69	1.07	0.00	0.03	16,50	0.00	0.00	0.00	11.92	24.93
	SOIL 10	670.1	0.73	0.74	0.04	0.03	17,68	0.00	0.00	0.00	10.60	25.24
25	SOIL 11	776.4	0.53	0.74	0.00	0.02	14.19	0.00	0.00	0.00	8.64	20.32
	SOIL 12	699.7	0.71	0.95	0.00	0.03	16.10	0.00	0.00	0.00	11.34	24.17
27	SOIL 12 DUPLICATE	716.1	0.55	0.87	0.00	0.02	15.08	0.00	0.00	0.00	9.65	21.91
	SOIL 13	717.0	0.74	0.98	0.05	0.03	15.41	0.00	0.00	0.00	12.15	24.00
29	SOIL 14	724.7	0.59	0.89	0.00	0.03	16.69	0.00	0.00	0.00	10.08	23.84
30	SOIL 15	739.9	0.55	0.97	0.00	0.02	14.48	0.00	0.00	0.00	10.28	21.73
	SOIL 16	627.4	0.97	1.10	0.00	0.04	16.77	0.00	0.00	0,00	14.32	27.00
	SOIL 17	558.4	1,01	1.01	0.07	0.05	17.71	0.00	0.00	0.00	14.57	28.09
	SOIL 18	665.7	0.62	1.07	0.00	0,03	16.51	0.00	0.00	0.00	11.37	24.53
	SOIL 19	730.3	0.58	0.75	0.00	0.03	13,39	0.00	0.00	0.00	9.18	19.92
35	SOIL 30	741.5	0.82	0,82	0.05	0.04	15.16	0.00	0.00	0.00	11.79	23.57
36	SOIL 31	785.2	0.62	0.81	0.00	0.03	13.89	0.00	0.00	0,00	9.85	20.91

設備を受ける。
Table Transparer

Page: 15

50 9.29 10.65 8.99 12.18 11.70 9,85 9.77 1.3 12.24 14.25 12.67 10.83 14.52 1.8 9.44 11.42 10.89 10.83 11.80 11.60 11.07 49 8.0 0.0 8.8 0.0 8.0 8.0 8.0 80.0 8. 8.8 8.0 8. 9.0 8.0 8.0 8.0 8,0 8.0 8. 8.0 8.0 Gamma Spectrometry Data from Drain Line Soil Samples 8.0 48 8.0 0,0 8.0 80.0 9.0 8 8.0 8.0 8.0 8.0 9.0 0.00 8.0 0.00 8.0 8. 0.0 0.0 9.0 8.0 8.0 8. 8. 8.0 8. 8.0 8.8 8 9.0 8. 8. 8.0 8.0 8.0 9.0 0.0 8.0 8. 9.0 8.0 80.0 46 15.59 15.05 14.98 14.97 16.87 15.28 15.80 13.80 15.79 15.09 14.97 15,71 18.43 14.23 15.79 17.03 17.37 16.89 17.03 16.81 45 (Sheet 2 of 6) 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 9.03 0.0 0.03 0.03 9.0 0.03 0.02 0.03 0.03 0.03 0.03 0.03 9.0 44 8. 8.0 0.05 8.0 9.0 8,0 8 80.0 9. 9.0 8,0 9.0 8.0 8.0 0.05 9.0 90.0 0.04 8.0 0.05 8.0 0.0 43 0.70 0.63 98.0 8 1,15 0.77 8. 0.84 0.79 1.01 Ĭ 8 1.03 0.99 8. 0.87 0.87 8 0.94 0.82 1.01 42 0.70 0.65 0.59 0.58 9.66 0.68 0.92 0.58 8 0.60 0,55 0.73 99.0 0.68 0.64 0.71 0.67 0.67 0.81 Table A-1. 41 785.8 724.2 691,3 725.2 728,9 738.9 713.5 819.6 772.7 704.9 661,3 776.0 761.1 818.2 677.2 693.2 640.8 908.6 739.0 690.5 705.4 752.3 613.0 678.5 665.2 650.7 774.0 **58 DUPLICATE** 80 DUPLICATE 39 33 33 33 33 33 33 33 33 33 88 L 65 2 7 72 73 74 41 SOIL 44 45 SOIL 44 45 SOIL 44 8 SOIL 48 SOIL 48 SOIL 53 SOIL 55 SOIL 55 SOIL 56 SOIL 56 SOIL 66 SOIL 66 SOIL 67 SOIL 68 SOIL 69 SOIL 60 SOIL 60 SOIL 61 SOIL 60 SOIL 61 SOIL 62 SOIL 63 SOIL 64 SOIL 65 SOIL 66 S **63** SOIL SOIL SOIL 65 SOIL SOIL SOIL SOIL SOIL 64 SOIL 68 SOIL SOIL 66 SOIL 70 SOIL 39 62 67 69

24.76

25,41

22.83

25.11

26.07

22.38

23.54

25.47 25.26 24.67

25.71

19.42 21.62 22.18 22.162 23.57 23.57 23.57 23.58 23.54 23.58 23.58 23.58 23.58

- Windows (

N/04SRR990032

Table A-1. Gamma Spectrometry Data from Drain Line Soil Samples (Sheet 3 of 6)

	39	40	41	42	43	44	45	46	47	48	49	50
73	SOIL 81	792.7	0.61	0.76	0.00	0.03	14.42	0.00	0.00	0.00	9.46	21.17
74	SOIL 82	811.9	0.54	0.68	0.00	0.02	14.62	0.00	0.00	0.00	8.43	20,63
75	SOIL 83	789.6	0.61	0.68	0.00	0.03	14.55	0.00	0.00	0.00	8.95	20.95
76	SOIL 84	774.1	0.57	0.81	0.00	0.03	13.97	0.00	0.00	0.00	9.41	20.65
77	SOIL 85	800.7	0.69	0.66	0.05	0.03	14.58	0.00	0,00	0.00	9.81	21.59
78	SOIL 86	804.3	0.58	0.80	0.00	0.03	14.32	0.00	0.00	0.00	9.45	21.03
79	SOIL 87	815.7	0,63	0.84	0.00	0.03	14.91	0.00	0.00	0.00	10.14	22.12
80	SOIL 88	823.2	0.55	0.73	0.00	0.02	14.22	0.00	0.00	0.00	8.77	20.46
81	SOIL 89	792.0	0.56	0.92	0.00	0.03	15.36	0.00	0.00	0.00	9.95	22.39
82	SOIL 90	778.8	0,82	0.77	0.06	0.04	14.04	0.00	0.00	0.00	11.60	22.32
83	SOIL 91	782.6	0.41	0.81	0.00	0.02	15.08	0.00	0.00	0.00	8.11	20.77
	SOIL 99	772.4	0.48	0.72	0.00	0.02	15.75	0.00	0,00	0.00	8.15	21.52
	SOIL 100	603.9	0,60	0.97	0.00	0.03	15.89	0.00	0.00	0.00	10.60	23.38
	SOIL 101	717.4	0.45	0.73	0.00	0.02	13.43	0.00	0.00	0.00	7.97	19.06
-	SOIL 102	736.9	0.53	0.90	0.00	0.02	14.33	0.00	0.00	0.00	9.64	21.13
	SOIL 103	776.0	0.62	0.55	0.00	0.03	11.32	0.00	0.00	0.00	8.26	17.26
89	SOIL 104	766.2	0.62	0.76	0.04	0.03	13.90	0.00	0.00	0.00	9.80	20.85
90	SOIL 105	725.2	0.49	0.78	0.00	0.02	13.24	0.00	0.00	0.00	8.58	19.31
91	SOIL 106	624.8	0.80	0.81	0.06	0.04	15.67	0.00	0.00	0.00	11.71	24.01
92	SOIL 120	816.1	0.49	0.77	0.00	0.02	14.81	0.00	0.00	0.00	8.49	20.81
	SOIL 121	765.9	0.54	0.81	0.00	0.02	14.47	0.00	0.00	0.00	9.19	20.99
94	SOIL 122	797.2	0.59	0.92	0.00	0.03	13.55	0.00	0.00	0.00	10.21	20.77
95	SOIL 123	736.6	0.58	0.96	0.03	0.03	13.94	0.00	0.00	0.00	10.65	21.43
96	SOIL 124	774.7	0.54	0.81	0.00	0.02	11.40	0.15	0.00	0.00	9.20	18.07
	SOIL 125	774.0	0.63	0.85	0.00	0.03	13.58	0.00	0.00	0.00	10.10	20.76
98	SOIL 126	779.9	0.51	0.79	0.00	0.02	10.28	0.00	0.00	0.00	8.85	16.54
L	SOIL 150	698.9	0.52	0.96	0.00	0.02	15.73	0.00	0.00	0.00	9,90	22.69
100	SOIL 151	623.2	0.76	1.10	0.05	0.03	16.34	0.00	0.00	0.00	13.02	25.52
101	SOIL 152	672.7	0.82	1.13	0.00	0.04	14.48	0.00	0.00	0.00	13.37	23.98
102	SOIL 153	691.5	0.82	1.07	0.05	0.04	14.30	0.00	0.00	0,00	13.33	23.73
103	SOIL 154	707.8	0.87	1.08	0.06	0.04	14.30	0.00	0.00	0.00	13.88	24.13
104	SOIL 155	724.5	0.68	0.82	0.04	0.03	13.71	0.00	0.00	0.00	10.62	21.25
105	SOIL 156	705.2	0.51	0.88	0.00	0.02	12.32	0.00	0.00	0.00	9.39	18.94
106	SOIL 160	816.8	0.47	0.70	0.00	0.02	11.59	0.00	0.00	0.00	8.02	17.28
107	SOIL 161	758.8	0.54	1.11	0.00	0.02	15.75	0.00	0.00	0.00	11.00	23.46
108	SOIL 162	739.7	0.53	0.85	0.03	0.02	13.38	0.00	0.00	0.00	9.53	20.09

が、計画製造製品のでは、 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
The Billion and the American

Table A-1. Gamma Spectrometry Data from Drain Line Soil Samples (Sheet 4 of 6)

39	40	41	42	43	44	45	46	47	48	49	50
109 SOIL 1000	800.7	0.54	0.62	0.04	0.02	10.49	0.00	0.00	0.00	8.26	16.35
110 SOIL 1001	756.6	0.67	0.68	0.00	0.03	14.14	0.00	0.00	0.00	9.49	20.95
111 SOIL 1002	807.5	0.52	0.65	0.00	0.02	14.90	0.00	0.00	0.00	8.12	20.69
112 SOIL G1	667.4	0.59	0.88	0.00	0.03	15.93	0.00	0.00	0.00	10.03	23.04
113 SOIL G2	680.9	0.61	0.86	0.00	0.03	15.78	0.00	0.00	0.00	10.04	22.90
114 SOIL G3	631.7	0.62	0.73	0.00	0.03	15.96	0.00	0.00	0.00	9.38	22.65
115 SOIL G5	573.6	0.95	0.97	0.06	0.04	18.05	0.00	0.00	0.00	13.88	27.94
116 SOIL G6	747.8	0.47	0.62	0.00	0.02	10.01	0.18	0.00	0.00	7.49	15.52
117 SOIL G7	692.2	0.61	0.80	0.00	0.03	15.44	0.00	0.00	0.00	9.71	22.35
118 SOIL G9	700.1	0.58	0.73	0.00	0.03	14.99	0.00	0.00	0.00	9.02	21.42
119 SOIL G10	677.7	0.56	0.94	0.00	0.03	15.69	0.00	0.00	0.00	10.06	22.79
120 SOIL G11	717.2	0.68	0.75	0.04	0.03	15.36	0.00	0.00	0.00	10.22	22.63
121 SOIL G13	678.9	0.65	0.86	0.03	0.03	16.35	0.00	0.00	0.00	10.54	23.82
122 SOIL G14	670.2	0.73	0.75	0.00	0.03	14.01	0.00	0.00	0.00	10.30	21.39
123 SOIL G15	689.4	0.55	0.73	0.00	0.02	14,14	0.00	0.00	0.00	8.78	20.38
124 SOIL G30	759.5	0.67	0.95	0.00	0.03	13.22	0.00	0.00	0.00	11.00	21.03
125 SOIL G31	644.4	0.83	1.36	0.05	0.04	19.15	0.00	0.00	0.00	15.14	29.79
126 SOIL G32	729.1	0.56	0.95	0.00	0.03	17.57	0.00	0.00	0.00	10.16	24.75
127 SOIL G33	603,6	0.81	1.13	0.00	0.04	17,56	0.00	0.00	0.00	13.26	26.97
128 SOIL G34	719.9	0.80	1.00	0.04	0.04	13,13	0.00	0.00	0.00	12.71	22.15
129 SOIL G35	686.2	0.78	1.10	0.05	0.03	15.94	0.00	0.00	0.00	13.19	25.25
130 SOIL G36	660.7	0.67	0.85	0.00	0.03	13.95	0.00	0.00	0.00	10.44	21.38
131 SOIL G37	696,6	0.72	0.90	0.05	0.03	15.16	0.00	0.00	0.00	11.53	23.32
132 SOIL G39	653.6	0.58	1.14	0.00	0.03	14.76	0.00	0.00	0.00	11.48	22.82
133 SOIL G40	750.8	0.58	0.99	0.00	0.03	14.00	0.00	0.00	0.00	10.58	21.47
134 SOIL G41	738.0	0.80	0.94	0.05	0.04	16.59	0.00	0.00	0.00	12.43	25.42
135 SOIL G42	643.8	0.56	0.95	0.00	0.03	17.72	0.00	0.00	0.00	10.21	24.93
136 SOIL G42	831.9	0.64	0.77	0.02	0.03	15.14	0.00	0.00	0.00	9.89	22.17
137 SOIL G43	767.0	0.71	0.90	0.00	0.03	15.12	0.00	0.00	0.00	11.07	23.00
138 SOIL G44	727.0	0.83	0.97	0.06	0.04	15.65	0.00	0.00	0.00	12.87	24.78
139 SOIL G44 DUPLICATE	768.2	0.62	0.86	0.00	0.03	15.31	0.00	0.00	0.00	10.11	22.49
140 SOIL G45	748.3	0.61	0.78	0.00	0.03	13.66	0.00	0.00	0.00	9.54	20.45
141 SOIL G45 DUPLICATE	814.3	0.72	0.86	0.00	0.03	15.43	0.00	0.00	0.00	10.91	23.21
142 SOIL G46	681.8	0.59	0.92	0.05	0.03	14.15	0.00	0.00	0.00	10.60	21.61
143 SOIL G46 DUPLICATE	806.2	0.74	0.82	0.05	0.03	14.66	0.00	0.00	0.00	11.15	22.59
144 SOIL G47	667.2	0.89	0.82	0.06	0.04	17.80	0.00	0.00	0.00	12.44	26.68

19.13

Page: 18

20 10.80 10.69 8.76 9.25 8.48 8.58 10.10 9.30 9.43 10.35 9.93 10.04 9.55 10.16 8.90 9.30 8.40 8,06 7.30 9.11 8.72 10.0 9.28 10.61 10.61 49 9.0 8.0 8 8.0 80.0 8.0 8.0 8.0 8.0 8.0 0.0 8.0 0.0 8. 8.0 80.0 8.0 0.0 0.0 0.0 0.0 0.0 8.0 8.0 8 8.0 0.0 9.0 Table A-1. Gamma Spectrometry Data from Drain Line Soil Samples 0.0 0.0 48 8.0 0.0 8.0 8.0 8.0 8.0 800 8.0 8,0 8 8.0 80.0 8.0 8.0 8 8.0 8.0 8.8 8.0 0.0 8.0 8.0 0.0 8.0 8.0 0.0 8.0 8.0 8.0 8.0 8,0 47 80.0 8.0 8.0 8.0 8.0 8 8.0 8.0 8.0 9.0 0.0 8 8.0 9.0 8.0 8.0 8.0 8,0 8.0 8.0 8 8 46 14.75 14.55 13.63 15,43 15.15 13.85 13.03 15.38 12.49 14.74 13.99 14.78 18.09 13,99 14.33 15.98 13,45 14.50 14.63 14.36 13.00 12.77 14.79 14.86 15,57 16,12 16,30 18.11 13.51 45 (Sheet 5 of 6) 0.02 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.03 80.0 0.02 0.02 0.02 0.03 44 8. 8.0 8.0 8. 8.0 8 0.0 8.8 8,0 8.0 9.0 8. 0.05 9.0 8 8.0 9.0 8 9.0 8.0 8.0 43 0.79 0.65 0,65 0.68 0.78 0.76 0.79 0.68 0.80 0.75 0.75 0.78 0.86 0.62 0.77 0.71 0,69 0.81 0.87 0.68 0.74 76.0 0.91 0.81 42 0.59 0.60 0.70 0.65 0.63 0.50 0.65 0.59 0.72 0,59 0.56 0.50 0.64 9.60 0.53 0.53 0.52 0.43 26. 0.50 0.58 0.64 0.51 41 777.5 6'69' 792.3 789.6 738.8 785.2 767.5 801.8 756.2 784,8 798.6 818.7 785.2 805.3 809.1 734.3 701.0 710.0 790.2 761.1 644.3 711.4 676.6 705.5 754.2 6.999 689.0 795.4 777.1 768.1 40 149 SOIL G50 (60000 SECOND 169 SOIL G80 DUPLICATE 177 SOIL G88 DUPLICATE 145 SOIL G47 DUPLICATE 151 SOIL G52 152 SOIL G53 153 SOIL G60 155 SOIL G62 156 SOIL G63 **G73** G85 160 SOIL G70 **G72** 64 SOIL G74 65 SOL 675 166 SOIL 978 67 SOIL G79 168 SOIL G80 170 SOIL GB1 171 SOIL G82 172 SOIL G83 73 SOIL G84 75 SOIL G87 176 SOIL G88 178 SOIL G89 179 SOIL G90 146 SOIL G48 147 SOIL 649 148 SOIL 650 58 SOIL G65 59 SOIL G66 161 SOIL G71 150 SOIL 651 57 SOIL G64 54 SOIL G61 174 SOIL 162 SOIL 163 SOIL

20.15

19.68 22.58

19.53

20.37

21.06

21.15

21.08

19.74

21.76

21.53 20.58 21.64 19.05 19.02 18.85 21.95 21.18 22.28 21.35 22.23

21.47

・ できるとのできる。 ・ できるとのできるとのできるというできる。 ・ できるとのできるというできるというできる。 ・ できるというできる。 ・ できるというでもできるというできるというできるというでもできるというでもできるというでもできるというでもできるというでもできるというでもできるというでもできるというでもできるというでもできるというでもできるというでもでもできるというでもでもでもできるというでもでもできるというでもでもできるというでもでもできるというでもでもでもでもでもでもでもでもでもでもでもでもでもでもでもでもでもでもでも
: and the second
The Confidence and Association